Implementing GPU computations in Octave and statistical applications

Albrecht Gebhardt
Univ. Klagenfurt, Inst. f. Statistik
albrecht.gebhardt@aau.at

Gunter Spöck
Univ. Klagenfurt, Inst. f. Statistik
gunter.spoeck@aau.at

Abstract

GNU Octave1 is a free software targeting scientific computing with focus on numerics and linear algebra. To some extent it shares its syntax with MATLAB, a commercial tool widely used in science and engineering. During the last years parallel computing has become more and more affordable, not only but to a large extent by the advent of end user programmable GPU hardware providing hundreds or even thousands of specialized computing cores. Such a parallel computing hardware is provided by NVidia with its CUDA architecture.

Soon after the availability of the CUDA SDK some parallel processing toolboxes for MATLAB became popular (GPUmat2 and more recent the Parallel Computing Toolbox3). For Octave only a small proof-of-concept implementation exists (MMGPUOctave, see \cite{1}), lacking all the comfortable features of its MATLAB counterparts. We present an extension of this work which tries to fill this gap, providing the end user with a special GPU matrix class where all relevant operations like multiplication and inversion are executed in parallel on the GPU. This works mainly by providing an interface to cuBLAS4, a GPU accelerated implementation of the standard BLAS operations.

We will show how this new data type can help to speed up operations in statistical applications involving a large number of linear algebra operations. The examples are taken from hyper-spectral imaging and pollution dispersion modelling.

Literatur

\begin{thebibliography}{9}
\end{thebibliography}

1http://octave.org
2http://sourceforge.net/projects/gpumat/
3https://developer.nvidia.com/cuBLAS